A Fast Fourier Transform Technique for Pricing European Options with Stochastic Volatility and Jump Risk

نویسندگان

  • Su-mei Zhang
  • Li-he Wang
چکیده

We consider European options pricing with double jumps and stochastic volatility. We derived closed-form solutions for European call options in a double exponential jump-diffusion model with stochastic volatility SVDEJD . We developed fast and accurate numerical solutions by using fast Fourier transform FFT technique. We compared the density of our model with those of other models, including the Black-Scholes model and the double exponential jump-diffusion model. At last, we analyzed several effects on option prices under the proposedmodel. Simulations show that the SVDEJD model is suitable for modelling the long-time real-market changes and stock returns are negatively correlated with volatility. The model and the proposed option pricing method are useful for empirical analysis of asset returns and managing the corporate credit risks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Option pricing under the double stochastic volatility with double jump model

In this paper, we deal with the pricing of power options when the dynamics of the risky underling asset follows the double stochastic volatility with double jump model. We prove efficiency of our considered model by fast Fourier transform method, Monte Carlo simulation and numerical results using power call options i.e. Monte Carlo simulation and numerical results show that the fast Fourier tra...

متن کامل

Fast Fourier transform technique for the European option pricing with double jumps

In this paper, we provided a fast algorithm for pricing European options under a double exponential jump-diffusion model based on Fourier transform. We derived a closed-form (CF) representation of the characteristic function of the model. By using fast Fourier transform (FFT) technique, we obtained an approximation numerical solution for the prices of European call options. Our numerical result...

متن کامل

Option Pricing under Heston and 3/2 Stochastic Volatility Models: an Approximation to the Fast Fourier Transform

The purpose of this thesis is to build a fast and accurate technique for computing option prices under stochastic volatility assumption. Currently, the methodology based on the fast Fourier transform is widely used to deal with that issue. Here we derive and suggest a second order approximation, which offers faster, transparent and deeper interpretations in comparison with existing the ones. Th...

متن کامل

Pricing and Hedging in Affine Models with Possibility of Default

We propose a general framework for the simultaneous modeling of equity, government bonds, corporate bonds and derivatives. Uncertainty is generated by a general affine Markov process. The setting allows for stochastic volatility, jumps, the possibility of default and correlation between different assets. We show how to calculate discounted complex moments by solving a coupled system of generali...

متن کامل

Pricing Barrier and Bermudan Style Options Under Time-Changed Lévy Processes: Fast Hilbert Transform Approach

We construct efficient and accurate numerical algorithms for pricing discretely monitored barrier and Bermudan style options under time-changed Lévy processes by applying the fast Hilbert transform method to the log-asset return dimension and quadrature rule to the dimension of log-activity rate of stochastic time change. Some popular stochastic volatility models, like the Heston model, can be ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014